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Abstract. In this work we have improved the kinetic model of Kieffer and Borchanlt 
for diffusion in silicate melts. which takes into account both the diffusion of individual 
polyanions and the reaction of different polyanions through condensadon and splitting events. 
Making assumptions for the individual condensation reauions, similar to those by Masson. the 
equilibrium polyanion distributions in silicate melts were calculated by solving a system of 
coupled first-order differential equations, describing the reactions between polyanions of various 
sizes. The wncentration dependence of the SO:- monomers. determined by our approach. 
is identical to that resulting from the thermodynamic treatment by Masson. Furthemore, by 
allowing for local changes in the isotope dstributions of the elements, and by assuming that 
migration of all species present in the system occurs due to random motion, the self-diffusion 
of silicon and oxygen in CooSiO2 melts has. been simulated.. The parameten for the madel 
have been estimated by fitting the simdation results to our experimental d m  of Si and 0 
tracer diffusion. While the simulated concentration profiles were in good agreement with our 
experimental tracer diffusion measurements in the CoOSiO2 system, their shape could not be 
described by the standard solution of Fick's law. Conversely, for the CaoSiO2 and PbO- 
Si02 systems, the simulated profiles were in much better agreement with the standard solution. 
This difference in diffusional transport p r o p d e s  can be qualitatively interpreted as due to the 
srmctural differences of Coo-Si02 as compared to the two other systems. 

1. 'Introduction 

The properties of silicate melts, e.g. the viscosity and the electrical and thermal conductivity, 
depend~very sensitively on the chemical composition and on the nature of the constituents. 
An increase in temperature not only enhances atomic mobility by providing the necessary 
activation energy, it also alters the degree of networking in ,the equilibrium structure. To date, 
a number of models have been proposed by several authors 11-61 for the description of the 
structure of silicate melts. Thescmodels are mostly based on thermodynamic formalisms. 
While the relationships between structure and thermodynamic properties have been explored 
extensively, attempts to relate the mobilities of structural constituents to the geometry of 
silicate structures are sparse [7-101. 

The structural unit of silicates is the Si04 tetrahedron. By sharing oxygens, these units 
can combine to form larger ionic complexes (polyanions), which exhibit various shapes 
and sizes. Depending on the chemical conditions, these complexes can condense into large 
polymeric species, and eventually into a three-dimensional network. The transport properties 
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of silicate melts obviously depend on the degree of networking, and on the facility with 
which the structure can incorporate mobile ions. In binary metal oxide silicates, M,O- 
SiOz, structural components include M("*)+ and 0'- ions and a distribution of polyanions, 
which can be perceived as the result of a dynamic equilibrium of condensation and splitting 
reactions between polyanions of different extents. The general form of these reactions is 

Z(n+l)- + 2 si 02("+2)- Si"03n+1 n+l 3n+4 -to2- 
where the reaction constants kl,n are defined as 

Here [Si,O,,+, 2 ( n + l ) - ] ,  [Si,+10:~$2)-]~and LO2-] are anion fractions, and will henceforth be 
abbreviated as X,,, X.+I and XOZ-, respectively. By assuming that the kl, are independent 
of composition, length and form of polyanions, Masson et a1 [1,2] derived a formalism 
that allows for the calculation of the polyanion distributions in silicate systems. A detailed 
review of the models for silicate melts has been given by Gaskell [3]. 

Recently the system Coo-Si02 has been systematically investigated by Kieffer and 
Borchardt [ l l ,  131 and by Young et al [14]. Kieffer and Borchardt [ l l ,  131 proposed a 
kinetic model that accounts for polycondensation reactions between network species and 
for diffusional transporr As opposed to the common thermodynamic approaches [1-6], this 
model allows one to consider non-equilibrium situations and to observe the evolution of 
the system as a function of time. The authors applied their model to evaluate polyanion 
distributions and effective cation tracer diffusion coefficients in the system CoO-SiOz, as 
a function of composition. Subsequently, Young et a1 [14] measured the tracer diffusion 
coefficients of oxygen as a function of temperature and composition. 

In the work presented here, the kinetic theory of Kieffer and Borchardt 1131 has been 
enhanced to encompass oxygen tracer diffusion in silicate melts. While it is straightforward 
to account for the number of silicon atoms incorporated in a j-mer, the number of oxygen 
atoms camed by this aggregate depends on the extent of internal crosslinking. In the original 
formulation of the model, this inSormation was implicitly contained in factors w ( j ,  m),  
which represent the probabilities for a j-mer to emanate from an m-mer, where m j ,  
through rupture of a single bond. An explicit expression for the w ( j ,  m )  is impossible to 
give without extensive knowledge of structural geometries. In the present work we therefore 
simplified the original formulation in order to be able to incorporate an explicit oxygen 
balance. In the following we will briefly outline the derivation of the revised equations, and 
then show how the model can be applied to explain the experimentally observed behaviour 
of oxygen tracer diffusion in cobalt silicate melts. Furthermore, the polyanion distributions 
in this system, as calculated with the revised model, will be given. Finally, simulations 
of oxygen and silicon tracer diffusion in the systems CaO-SiOz and PbO-Si02 will be 
discussed. 

2. Kinetic model of silicate melts 

2.1. Structure of silicate melts 

In their original derivation, Kieffer and Borchardt attempted to incorporate the complexity 
of network structure of silicate melts by means of a functionality parameter fj and a related 
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factor w( j ,  m),  describing the probability that an m-mer decomposes to yield at least one 
j-mer. This combination of factors reflects the fraction of bridging oxygens that a polyanion 
of a given size can have. The authors chose the magnitudes for the functionality parameter 
as a function of the composition, by interpolating between known limiting values. They 
described the system by means of anion fractions Nj, where j is the number of silicon 
atoms incorporated into a polyanion containing j unit building blocks. It is defined as 

m 
~j =n,  / c i n i  

!=I 
(3) 

where nj is the number of polyanions with j silicon atoms. 
They took the value of the equilibrium reaction constant kl,n = 2.6 for CoOSiOZ at 

T = 1450°C from Masson [2]. Furthermore, the magnitude of k,," was assumed to be 
independent of the size of polyanion, and according to equation (1) can be related to the 
reaction rate constants k* for condensation and k- for splitting, according to kl,,, = k + / k - .  
The overall equilibrium polyanion distributions can then be calculated by solving the system 
of coupled reaction rate equations. The numerical results for the polyanion distribution in 
cobalt silicate melts show a good qualitative agreement with those of Masson 121. 

As a result of the condensation and splitting reactions, silicon tracer atoms are exchanged 
between polyanions of different sizes, and, depending on the size of the polyanion they 
are incorporated in, the silicon tracer atoms migrate with different velocities. When 
combining (de)polymerization reactions and Fick's transport equations, the development 
of tracer concentration profiles with time can be simulated for various chemical and thermal 
conditions. Here we will expand this formalism to include the balance of oxygen atoms. 
To this end we will introduce two minor modifications to the original formulation: 

(i) With the adjustable w ( j ,  m) parameters Kieffer allowed, in principle, for various 
degrees of ramification and ring formation in the polyanions. In his calculations he chose 
the values for w ( j ,  m) arbitrarily within known limits. Unfortunately, the same value for 
w ( j ,  m) can be obtained for different polyanion geometries. Since the oxygen balance 
depends on the knowledge of the relative extent of ring formation versus open-ended 
branching, we needed a more definite approach here. Because of the relatively small effect 
that w ( j ,  m )  has on the polyanion distributions, we simply incorporated it into the reaction 
rate coefficient k - .  For compatibility reasons we therefore replaced the factor ( j  - l), 
which represents the number of bonds within a j-mer that can break, with the factor ,u(j). 
The magnitude of the latter factor can vary; for linear chains it will again be ( j  - 1)/2. 
Furthermore, since the reaction constant k is assumed to be independent of polyanion shape 
and size, any size dependence of the reaction rate constant will drop out in the end. 

(ii) The oxygen will be accounted for as being part of aggregates of various~sizes, 
including free oxygen 0'-. I t  is therefore advantageous to normalize the anion fractions by 
including the free oxygen, i.e. 

where no>- is the number of free oxygen anions in the system and nj is the number of 
polyanions of size j .  Naturally these anion fractions are normalized to unity: 
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For the following derivation it is assumed that a series of reactions, all extensions of 
equation ( I ) ,  contribute to the overall anion balance. The general form of these reactions 
can be written, after Masson, as 

(6) 

Within a balance of volume dx dy dz, small compared to the root-mean-squared displacement 
of the mobile species during the observation period, but large compared to the average 
polyanion chain length , the anion balance can be established by including condensation 
and splitting reactions, as well as diffusion fluxes for each individual species simultaneously. 
After Kieffer [12,13] the balance for a j-mer in one dimension includes the following three 
processes: 

1. Diffusion of j-mers 

k ’ .  m + ( j  - m) - 1 + 0’-. 
k- 

with a diffusion coefficient Dj that is independent of the chemical composition. 

2. Creation of a j-mer through 
(i) condensation of an m-mer with a ( j  - m)-mer 

(ii) splitting of an m-mer when reacting with a free oxygen 

ax. 
at 

= k- 5 X,X@- 
m=j+l 

where A ( j )  is the integer part of fraction j f 2  in order to avoid double counting. 

3 .  Annihilation of a j-mer through 
(i) condensation of a j-mer with any other m-mer to a ( j  + m)-mer 

m ax- 
at 

= -k+Xj X, 
m= I 

(ii) splitting of a j-mer with free oxygen ions 

where b( j )  is the set of possibilities for a j-mer to decompose into smaller fragments. If 
no rings form, there are ( j  - 1) bonds in the polyanion, and p ( j )  is equal to ( j  - l)/2. 
The factor o f  112 is due to symmetry. 
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Summation of the above equations yields 

io') m~ .~ 

XmXj- ,  + k- 2 'X,X@- - k'Xj E X .  - k - X @ - p ( j ) X j .  
axj a2x. 

at ax -= D j f  + k+ 
m=I m=j+l m=1 

(12)- 

Equation (12) describes the local ion balance of polymer ions of any size j ;  the entire 
system of polyanions is described by an infinite number of similar equations, one for every 
j-mer. In practice, one has to limit this number of equations, which is reasonable to do, 
as long as the anion fractions converge to 0 for j + 00, i.e. for sufficiently large modifier 
cation concentrations. 

A special case is that of the equilibrium state. Then the X j  are independent of time and 
space, i.e. 

axj / a x  = o and axjlat = 0. 

Equation (12) then reduces to 

A ( j )  m m 

,=I m = j + l  m=1 
k + c  X m X j _ ,  + k- XmX0.  - - k+Xj  X ,  - k-Xo. -p( j )Xj  = 0. (13) 

Using equation (5). which is rewritten as 

m 

x, = 1 - xo2- 

we get 

m j j-1 

x, = 1 - xo*. - Exm = 1 - xo2- - E x m  - xj 
j+l ,=I m=I 

~~ 

and equation (13) becomes 

W )  
k + ~ X m X j , , + k - X o ~ -  -k+Xj(l-X@-)-k-X@-p(j)Xj = 0. 

m=l 

Dividing the above equation by k- ,  using k = k+/k-, and regrouping all X j  terms to the 
left-hand side, we get 

One can solve this expression for X,: 

2 X m ) ] W @ -  + k ( l  - X O z - )  + L L ( ~ ) X O ~ - I - ' .  
m=I 

(14) 



9840 T F Young et a1 

0 0.1 0.1 0.3 J . L  0.5 

C 
0 .+ 
Y 
CJ 
D 
L 
LL 

C 
0 .+ c 
D 
21 + 
0 a 

%io2 xsioz 
Figure 1. Polyanion distribution as a function of the 
silica concenmtion in Co@-SiO~ melts, calculated by 
using the present model. The curves are for J = I to 
20. 

Figure 2. Polyanion distribution as a function of 
the silica concentration. calculated by using different 
models: (-4 after Masson [21; (. ---) after Kieffefcr 
[131. The curves are for j = I to 10. 

For the monomer fraction, this equation simplifies to 

xo2- (1 - Xoz-) 
k( l  - X@-) +x,-. x, = 

This expression is identical to that given by Masson for the monomer fraction [1,2]. 
In figure 1 the results from this work, including anion fraction up to j = 20, for system 
CooS iOt  ate shown. Again, the value of 2.6 was assumed fork.  For comparison, we 
show in figure 2 the polyanion distributions calculated using the original formulation by 
Kieffer [ I l ,  131, and those reported by Masson. The agreement is rather qualitative. 

In equation (14) the fraction of a j-mer is expressed as a function of all the n-mers 
with n < j ,  and the fraction of free oxygen. The relation to the chemical composition of 
the system is obtained as follows. The number of silicon atoms is given by 

where n j  are the number of polyanions of size j ,  and 

is the normalization factor from equation (4). The product j n j  = j F X j  is equal to 
the number of silicon atoms in the j-mer, and will be referred to as cj. Similarly, 
coz- = nor- FXoz-. On the other hand, let CO, be the number of oxygens per j-mer. 
The total oxygen balance then reads 
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At this point it is necessary to make assumptions concerning the cyclization within each 
polyanion. For the work reported here our choice was to consider rings composed of no 
less than six units. Hence, 

CO. = 

where x represents the fraction of non-linear polyanions. Note that if X S ,  approaches 1, 
then coj = 2jc,. Although the possibility of threefold rings has been postulated by Bockris 
et al [15], in this work we only assumed rings larger than six units for the system COO- 
SO’, based on the results by Smith and Masson [2], who reported predominantly linear 
polyanions. Substitution in equation (22) yields 

( 3 j  + 1)nj = ( 3 j  + l ) F X j  for j < 6 4 ( 3 j + l ) n j ( l  - x ) + x ( 2 j n j ) = F [ ( 3 j + l ) X j - x ( j f l ) X j ]  f o r j > 6  

5 m 

c o ~ - + C ( 3 j + l ) n j + C n j [ ( 3 j + 1 ) - x ( j + 1 ) 1 = c o , , , ,  
1 6 

and after regrouping 

Using equations (16) and (5) we can replace the first two terms on the left-hand side of 
equation (18) and get 

Using the same assumptions concerning cyclization, we can furthermore express the 
numbers of singly bonded oxygens, 0-, and bridging oxygens, Oo, as 

and 

(21) 
In both equations (20) and (21). we can eliminate the rightmost summation using 
equation (19), and we can express the concentrations of the oxygen species, Oo and 0-, as 
functions of the chemical composition and the amount of free oxygen 0’-: 

no- = 2 C(j + 1)nj - nsioI - F + nM0) = 2(nsioi - n w  + F - nsioI - F + nM0) (: 
and it follows that 

no- = 2(nM0 -no?-). 
Similarly, we find 

noo = Znsio, +no,- - nM0. (23) 
Therefore the only input data that we need for our calculations are the concentration 

of free oxygen and the polycondensation equilibrium constant Our calculations are based 
on the values reported by Masson for these two quantities [ 1 , 2 ] .  In figure 3 the relative 
amounts of 0’-, 0’ and 0- are shown for the system CoO-SiO~. In summary, the principal 
differences between the current formulation of the kinetic model and Kieffer’s original form 
are the assumption of experimental data for the 0’- concentration and the ability to compute 
anion fractions recursively, as described by equations (14) and (15). 
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Figure 3. Oxygen species disiribution in COO-Si01 
melts, 

E: 2ou ---. ...... . 
0 
0 5 10 15 20 

X ( m m )  
Figure 4. Simulated concentration proale for Si tracer 
diffusion (dots) in C o o S i O ~  assurmng constant surface 
concentration. The full curve represents the mlytical 
solution for the same initial and boundary conditions. 
assuming a constant diffusion coefficient. 

2.2. Silicon and oxygen tracer diffusion in polyanion melts 

Assuming an equilibrium polyanion distribution, as obtained by the above procedure, we 
can substitute a fraction of the elements by a different isotope. Owing to the incorporation 
ofFick's second law in the balance equations, tracer concentration profiles for various initial 
and boundary conditions can be simulated. Substituting cj = j F X j  in equations (7&(ll), 
the time-dependent change of j-mer becomes 

2.2.1. Tracer di&ion of silicon. Suppose that a silicon tracer isotope is introduced into 
the melt. We can assume that it is uniformly distributed over all j-mers, i.e. for t = 0 the 
fraction of tracer isotopes, x,', is a constant for all j-mers. The balance of tracer elements 
is obtained my multiplying each concentration in equation (24) by the respective fraction 
of substituted isotopes. Abbreviating c; = cjx;, we get 

Furthermore, the total tracer concentration is c' = c; + c; + , . . = 1 c; and therefore 

ac* m ac; -=CF. 
at  j-1 
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The numerical simulation of tracer diffusion in a polyanion melt is carried out using an 
explicit finite-difference method to represent equation (25) numerically. The ion fraction 
XOZ- is obtained from the activity of COO [1,2]. If instead of k = 2.6, after Masson, we 
use k = 2.39 following Gaskell [3], the results for Coo-Si02 melt simulations yield no 
significant difference. The important detail that makes the outcome of these simulations non- 
trivial is the assumption that tracer elements migrate with different velocities, depending 
on the size of the polyanion they are incorporated in. The relative mobility of different 
polyanions can be described by a relation proposed by de Gennes [16], according to which 
the diffusion coefficients depend on the mass of the molecule as 

Dj = Dl(Mj/Mi)'. (26) 

A reasonable value for the diffusivity of the smallest polyanion is D1 = 5 x cm2 8-l 

[12,13]. The simulation starts with initial conditions of either a constant surface 
concentration or a source of finite thickness. Equation (25) was solved for a finite number 
of j-mers, up to 20 for X S ~ O ,  = 0.333 and up to 35 for Xsjo, = 0.428. The maximum 
j-value was chosen such as to guarantee a reasonable convergence in the anion fractions, 
i.e. vanishing fractions of the largest anions. The time increment for the integration was 
chosen to be 1 s. 

80 , . , , . , . . , , , , , , , , , , , - I 

x ("1 X < m m )  
Figure 5. Calculated silicon tracer diffusion profile Figure 6. Simulation of Si diffusion with constant 
(dots) in CoO-SiOz, assuming the same initial boundary surface concentration. using k = 2.6, I = 3600 s, z = 2 
conditions as In experiments by Kieffer [Ill, using and DI = ~ 5  x IO-' cm2 s-'. 
k = 2.6. L = 2, DI = 5 x IO-' cm2 s-'. The full 
curve represents the analytical solution for the same 
initial and boundary conditions, assuming a constant 
diffusion coefficient. 

In figure 4 the concentration profiles so obtained are shown for the case of a constant 
boundary concentration. The dots represent the simulation results, and the full curve is the 
best fit of these data with a standard error function complement solution, assuming a constant 
diffusion coefficient. Note the discrepancy between the two. Analogously, in figure 5 the 
results for a finite source arid the corresponding fit with the appropriate analytical solution 
are shown. This initial condition corresponds to those of experiments carried out in this 
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laboratory [IZ]. The discrepancy between simulation results and analytical fits is strongly 
dependent on the form of the polyanion distribution, as we will show later when comparing 
these data to those from simulations of the systems CaO-Si02 and PbO-SiOz under the 
same initial and boundw conditions. 

In figure 6 we show simulated silicon tracer diffusion profiles for situations characterized 
by different polycondensation rates, k". We recognize that, for a slower exchange of tracer 
isotopes between polyanions, the initial drop in the concentration profile is more rapid, but 
the tail of the concentration profile extends further into the specimen, which is due to the 
unimpeded migration of small anions. By impediment we mean condensation to a larger, 
slower-moving polyanion. 

T F Young er ai 

10-6'0 ' 2000 ' 4000 6000 '~ 8100' 0.30 0.35 0.40 0.45 

Time (sec) xsioz 
Figure 7. Effective silicon diffusion coefficients as Figure S. Effective tracer diffusion coefficient of 
a function of time, determined by a best fit of the silicon (-) compared to experimental data (- . -) 
analytical solution of Fick's second law for Eonstant by Kieffer, using T = 1500'C. k = 2.6, kt = 
diffusion coefficients, to lhe simulation data. 1 0 - ~  s-I, D, = 5  x 10-5 cm2 s-I, 

Effective diffusion coefficients, Dee, have been determined by fits of analytical solutions 
to the simulated diffusion profiles. In general, Dee is afunction of the parameters k+ ,  z and 
DI, as well as the diffusion time. In figure 7 the effective diffusion coefficients, determined 
from simulations, are shown as a function of the diffusion time, for various silicate systems. 
Below Zoo0 s a definite change in Dee can be observed. The effect of time is even more 
significant in the case of ,302-rich melts. The same phenomenon has also been found by 
Kieffer [12,13]. 

The values for the parameters kf, z and D, can be estimated by comparing effective 
diffusivities to those obtained from experiment. In figure 8 the comparison between 
simulated and experimental results is shown for the case of silicon diffusion in CoO-SiOZ 
systems [ l l ] .  The concentration dependences of the modelled and measured Deff are in 
good qualitative agreement. 

2.2.2. Tracer diffusion of oxygen. Although in principle similar to the description of silicon 
diffusion, oxygen diffusion requires one to account for one more level of complexity, which 
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arises from the distinct behaviour of free oxygen, 0'-, compared to singly or doubly bonded 
oxygen, 0- and OD respectively. The latter two species will be referred to as Oj, where j 
indicates'the size of the polyanion they are incorporated in. Furthermore, depending on how 
the tracer source has been prepared, i.e. whether the oxygen tracer isotope has been brought 
in via the transition-metal oxide (Co'*O-Si02) or via the silicon dioxide ( C O O - S ~ ~ ~ O ~ ) ,  the 
initial conditions for the tracer distribution may be different [7,17]. The fraction of tracer 
x: would be different among free and networked oxygen atoms, if the condensation and 
splitting reactions were slow, and the degree of cyclization were large. The extreme cases 
of initial tracer distribution will be discussed below. 

Of the two species 0- and OD, only 0- can detach from a polyanion to form a free 
oxygen, within a single condensation reaction. However, if the oxygen tracer was brought 
in via the silica, one can assume that I8O is distributed evenly over singly and doubly 
bonded oxygen atoms. We therefore do not differentiate between the two oxygen types, 
but rather distinguish oxygens according to the size of the anion they belong to. Hence, 
the diffusion rates of the different Oj species vary in the same way as those of the silicon 
species; in addition, 02- exhibits a significantly higher mobility. 

The balance of oxygen can be written: 

where each partial differential on the right-hand side can be equated to a diffusional and a 
sum of reaction terms, as will be shown below. After introducing the factors &, where 

3 j  + 1 j 4 6  

j > 6 ' { 3 j +  1 - x ( j +  1 )  

such that CO, = &FXj ,  we can modify equations @)-(I 1) to yield 

and 

Finally, after adding the diffusional term, the balance of oxygens associated with a 
j-mer reads 
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To describe the tracer diffusion of oxygen, we multiply each term in the above equation 
by the appropriate fraction of tracer isotopes. Note that the terms that diminish the oxygen 
balance within j-mers simply require multiplication by x:~ ,  whereas the terms that enhance 
the balance do not. After a detailed account of what tracer fractions were present in the 
reactants, and how this translates into a fraction within the product, let c:, = CO, . x:., and 
we get 

T F Young et af 

Again, this equation applies to the balance of oxygen contained in j-mers, where j can 
v a g  between 1 and CO. It remains to establish the balance of free oxygen, which results 
from the following two contributions: 

(i) The release of 0'- upon condensation of two polyanions, 

(ii) The consumption of 0% upon a depolymerization reaction, 

Summation of the two yields 

Converting mole fractions into concentrations, using col- = FXor-, and adding the 
appropriate diffusional term, the balance of free oxygen becomes 

T The fraction of tracer oxygens can then be introduced as before, using c& = c0z-xo2.. to 
yield 

(38) 

The total oxygen tracer is obtained after substituting equations (38) and (33) into 

The numerical conditions for two different ways of introducing oxygen tracer, as 
equation (27). 

indicated above, can be established as follows: 
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(i) Oxygen tracers initially bonded to CO atom. It is generally assumed that the 
transition-metal oxides completely dissociate in the melt, so that all 0" atoms at first will 
exist as free 0'- ions. At t = 0 all of the free oxygen will be enriched according to 

(39) 

where x&,~, is the fraction of "0 isotopes before mixing it with silica. Upon establishing 
thermodynamic equilibrium after mixing both oxides, part of the oxygens introduced 
through COO has been used to break oxygen bridges, and will therefore be associated 
with polyanions, 

T 
c;2-<x>01 = ~0cco0,~0~-  

where fiso is the natural fraction of '*O in oxygen. 
(ii) Oxygen tracers initially bonded to Si ntow. If we assume that all 0" atoms are first 

bonded to silicon atoms, the fractions of 0; are still less than the input value, because they 
are diluted by the formation of non-bridging oxygens, which require the incorporation of a 
free oxygen stemming from the COO for every bond that is broken. Hence, at t = 0 

and c;2-(x>o, is equal to the natural fraction of ISO, 

c;*.(x>ol = PRocoz-. (42) 

These two different initial conditions for the simulation of oxygen. tracer diffusion 
were considered in order to compare the numerical results to those of experiments that we 
performed in our laboratory. In our experiments we used a capillary-reservoir technique, 
so that the boundary condition is a constant concentration at x = 0. The melt contained 
in the capillary was enriched. In figure 9 we show the simulated diffusion profile for 
these experimental boundary and initial conditions. The simulation, as for the experiment, 
was limited to a relatively short .diffusion time, limited by the high diffusivity of 0'-. 
(With L > 2(Do,-t)1/2, tmm = 3600 s for a Colso tracer source.) The parameters for the 
simulation have been estimated. if not already known from the silicon tracer diffusion. by 
comparison with experimental data. From figure 9 it is again clear that the oxygen diffusion 
profiles cannot be fitted with the appropriate analytical solution. 

3. Results and discussion 

The accuracy of our computer simulations was verified by means of a situation for which 
the analytical solution is known. In the case of silicon diffusion, we determined a relative 
deviation from the exact result of per iteration, where the time step was 1 s. For a 
typical simulation run, the relative error therefore amounts to about I-3%. This inaccuracy 
is predominantly caused by the need to assume a finite value for the maximum length of 
a polyanion, jmZ, instead of infinity. For the simulation of oxygen diffusion. the error 

' 
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Figure 9. Simulated oxygen tracer diffusion profile 
for the system Coo-Si01 (dots). The full curve 
represents the analytical solution for the same initial 
and boundxy conditions, assuming a constant diffusion 
coefficient. The simulation parameters are k = 2.6, 
z 2, k+ = s-', D I  = 5 x cm2 s-', 
Doz. = 2 x 

Figure 10. Effective vacer diffusion coefficients of Si 
and 0 in COO-Si02 as a function of Xsio,. from both 
experiment 19,101: (D) 57CO: W"0 (0 )  2ySi. and 
simulations: I ,  CO"); 2, Sil8O2; 3, 29Si02. 

cm2 s-I. 

accumulated at a rate of 2.5 x IOds per time step. For this reason the simulations were 
usually kept to about 1000 steps. 

In figure IO the results for the effective tracer diffusion coefficients of Si and 0 in the 
system CoOSiOz are shown as a function of the melt composition. The concentration 
dependences in these coefficients are solely due to the shift in the polyanion distributions, 
and, with that, the shift in the average drift velocity of network species. For comparison, the 
numerical results are shown together with experimental data for the same system [ l l ,  141. 
This comparison demonstrates that our kinetic model provides a valid approach towards the 
interpretation of tracer diffusion of oxygen and silicon in CoOSiOz melts, yielding good 
qualitative and quantitative agreement with the experiment. In figure 10, the curves labelled 
I to 3 represent the simulation results under the assumption of all tracer oxygen initially 
bonded to CO, tracer oxygen equally distributed among all species, and all tracer oxygen 
initially bonded to silicon, respectively. The effective oxygen diffusion is slowest when the 
tracer is brought in through the silicon only, and fastest when brought in through cobalt only. 
This behaviour was also observed in experiments. The same phenomenon has also been 
reported for the system CaOSiOz [SI. Nevertheless, it seems to he extremely pronounced 
in the case of cobalt silicate melts. We therefore applied our model to the simulation of 
two other, well characterized systems, CaOSiOz [17-191 and PbO-Si02 [9, IO] melts. 

The polyanion distribution for lead and calcium silicates were calculated using 
equation (15). We have taken the values for the condensation equilibrium constants k 
from Masson [l]; they are k = 0.0016 for CaOSiOz and k = 0.196 for PbOSi02. For the 
activities of polyanions we used the values reported by Masson for branched polyanions. 
In figures 11 and 12 we present the polyanion disnibutions for CaOSi02 and PbO-Si02 
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melts, according to our calculations. For comparison, we included Masson's results as 
broken curves. Our results are in excellent quantitative agreement with those of Masson. 
For mole fractions Xsio, > 0.45 this kinetic model yields even better convergence than the 
thermodynamic models. Until now anion fractions have only been reported up to j = 10, 
because of the poor convergence of some models. The sums over all anion fractions shown 
in figures 11 and 12, X j  towards the SiOa-rich side are very close to 1 (for X S Q  = 0.5, 
j = 20 the error of EX, is smaller than O.OOl%), but according to other models these 
sums are typically much greater than 1. For PbOSiOa the calculated polyanion fraction is 
2.3 x at j = 12. The fractions of 
larger polyanions can therefore be neglected. Knowing the polyanion distribution we have 
then calculated the distributions of Oo, 0- and 0'- for these systems. The results shown 
in figures 13 and 14 are in good agreement with earlier work by Pretnar [4]. 

for j = 15, whereas for CaO-SOa it is 3.8 x 

Figure 11. Polyanion distributions for CaOSi& melts with k = 0.0016, assuming the activities 
of branched polyanions reported by Masson [I]: (----) Masson; (-)this work. The curves 
x e  for j = 1 to 10. 

The simulated profiles of silicon diffusion yield much better agreement with the 
analytical solution of Fick's law in the cases of Ca0-SiO2 and PbOSiOz melts. The 
agreement with values reported in the literature is also very good. For polyanion diffusion 
we have used the same values for the parameters z and D1 as we had estimated for CoO- 
Si02 melts. Figure 15 shows a fit of the analytical solution of Fick's law, with constant 
diffusion coefficient, to the simulated profile of silicon diffusing in PbO-SiOz. Likewise 
for the system CaO-SiOz, the effective diffusion coefficient providing the best fit of the 
analytical solution is virtually identical to the value obtained by experiment [9,10,17-191. 
This behaviour is quite different to that observed for the system Co@SiO2, where we 
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Figure 12. Polyanion distributions for PboSiOl melts with k = 0.196 (- --) Masson; (-) 
this work. The curves ase for j = 1 to 15. 

%io2 x S i 0 2  

Figure 13. Distribution of 0". 0- and 02- for the 
system CaO-Si01 with j = 20. k = 0.0016. 

Figure 14. Distribution of 0". 0- and 02- for the 
system PbOSiOz with j = 20, k = 0.196. 

cannot get a good fit of the analytical solution to either simulated or experimental results 
for silicon and oxygen diffusion [ll, 141. 

In the present form our kinetic model does not include the migration of metal cations 
in an explicit way. In real life any concentration fluctuations of metal cations may have 
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Figure 15. Simulation of B silicon LIacer diffusion profile (dots) in Pb0-Si01 and best fit 
with the corresponding analytical solution of Fick's second law, assuming a constant diffusion 
coefficient D = (2.85+0.15) x cm2 s-'. The simulation parameterr are k = 0.196, z = 2. 
ki = l W J s - ' ,  D1 = S  Y cm2 S K I .  

profound effects. For example, properties such as diffusion, viscosity and the melting 
point of silicates are strongly influenced by the nature and the concentration of metal 
cations. However, in our model the influence of the metal cations has been implicitly 
taken into consideration through the reaction equilibrium constant K and the value of 
D I .  Therefore, explicit consideration of the metal cation will most likely not affect the 
principal insights into the mechanisms of polyanion diffusion that were obtained by our 
kinetic model. Extending the model, in order to understand the role of metal cations, we 
need more detailed information conceming their interaction with the surrounding network, 
the type of information that may be gained by molecular dynamics simulations. Also, 
experimental work needs to be carried further in order to uncover the spectrum of structural 
environments present in these melts. 

4. Conclusion 

We have expanded the kinetic model of Kieffer and Borchardt to encompass oxygen tracer 
diffusion in silicate melts. Based on minor changes in the model assumptions, it was possible 
to derive a simple recursive formula for the calculation of polyanion distributions in silicate 
melts. The monomer (SO:- tetrahedron) concentration as a function of silica concentration 
calculated by this formula is identical to that resulting from the thermodynamic treatment 
by Masson. Based on the molar balances of the species present in the system, the diffusion 
equations of silicon and oxygen have been derived. 

The effective tracer diffusion coefficients of oxygen and silicon have been determined 
by means of a best fit of simulated concentration profiles with the appropriate analytical 
solution for the same boundary and initial conditions, while assuming a constant diffusion 
coefficient. The same procedure has been applied to experimental data obtained in our 
laboratory. Based on the comparison between numerical and experimental results, the 
concentration dependence of the effective diffusion coefficients can be explained as due to 
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a distribution of effective drift velocities of the diffusing species, which results from their 
temporary incorporation into polyanions of various sizes. 

A computer simulation of tracer diffusion of silicon and oxygen in the systems CoO- 
SiOz, PbO-Si02 and CaO-Si02 revealed that the diffusion processes in Coo-Si02 are 
strongly influenced by the exchange of tracer species between polyanions of different sizes, 
whereas the diffusion in the other two systems, whose networks are far more disintegrated, 
can be described by a single diffusion coefficient with sufficient accuracy. The effective 
diffusion coefficients obtained by simulation are in good agreement with experimental results 
reported in the literature. 
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